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Abstract 

The geometric parameters related to the point in the 
coordination polyhedron having the minimum varia- 
tion of distances to the vertices ('the centroid of the 
coordination polyhedron') are proposed as a measure 
of polyhedral irregularity or deformation. The numerical 
method for the determination of the centroid coordinates 
is described. Knowing these coordinates, the radius of 
the sphere circumscribed to the coordination polyhedron, 
the degree of sphericity of coordination, the principal 
axes of the ellipsoid fitted to the polyhedron and the 
displacement of the central atom from the centroid are 
calculated. These quantities are measures for various 
aspects of irregularity in the coordination polyhedron. 
The centroid calculation has been applied to the family 
of ABS2-type sulfides with cations in slightly to highly 
deformed octahedral coordinations. 

1. Introduction 

The coordination of an atom in a crystal structure is 
usually examined in one of the following two ways. (1) 
A Dirichlet domain (Voronoi polyhedron) is constructed 
around the atom and its geometric parameters are used 
for the analysis of the coordination. Several approaches 
have been proposed and used to obtain the crystal 
chemical parameters from such polyhedra (Carter, 1978; 
Fischer & Koch, 1979; Koch & Fischer, 1980). (2) The 
coordination of an atom is represented by a polyhe- 
dron termed a coordination polyhedron, the vertices of 
which are placed in the centres of surrounding atoms 
(ligands). The geometrical characteristics of the coordi- 
nation polyhedra are used especially for the analysis of 
the coordination number, bond lengths and bond angles 
around the central atom (e.g. Robinson, Gibbs & Ribbe, 
1971). In several cases, the dihedral angles between the 
normals of adjacent faces of a coordination polyhedron 
are examined to estimate its regularity (Porai-Koshits & 
Aslanov, 1972; Muetterties & Guggenberger, 1974). An 
interesting method is also the fitting of the position of 
atoms in a coordination polyhedron to the set of points 
with specific geometrical characteristics (Dollase, 1974; 
Drew, 1977). 

To our knowledge, the geometric parameters con- 
nected with the point which comes closest to the condi- 
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tion of being equidistant to all the coordinated ligands 
have never been used for crystal chemical analyses. 
For this point we propose the name 'centroid of the 
coordination polyhedron'. It is obvious that in a regular 
polyhedron the centroid coincides with the central atom, 
but this is usually not the case in an irregular polyhedron 
where knowledge of the centroid position should be of 
significant crystal chemical interest. 

We show that for every coordination polyhedron it is 
possible to find a point for which the variation of the 
distances to the ligand atoms is at a minimum. We also 
describe a method for the calculation of its coordinates 
and suggest several geometric parameters which can be 
calculated for a coordination polyhedron, knowing the 
coordinates of its centroid. 

2. The calculation of the centroid of coordination 

Let a polyhedron be represented by a set of n points (ver- 
tices) with orthogonal coordinates (Xl ,Yl ,Zl ) to (x,,y,,zn). 
A distance of an arbitrary point (xo,Yo,Zo) to the ith vertex 
of the polyhedron is given by 

d~ = [ (x~-  xo) ~ + (y~-  .~0) ~ + ( z , -  zo) ~] 
1/2 

We wish to find the point for which the variance of 
distances E(di - Edj ln)  2 is minimum, but to avoid irra- 
tional expression we find the minimum for the variance 
of the squares of distances (d2) instead. The expression 
to be minimized is 

We express d/ and dj in terms of the orthogonal 
coordinates 

d~ - EdWin = 2 ( Z x j / n  - x,)xo + 2 (Zy j ln  - yi)yo 
2 + 2 ( ~ z j / n -  z,)zo -~ x, + y~ + z~ 

- - r y]in - r zJin 

The square of (1) is then 

(1) 

(d~ - Ed~/n) 2 = 4x~(Exj - nx,)2/n  2 

+ 4Y2o(~yj -- nyi)2/n 2 
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where 

+ 4z '~(Ez j  - n z i ) 2 / n  ~ 

- 4 x o C ( E x j  - n x , ) / n  2 

- ,l:q0C(Ey 9 - ..y,)/n 2 

- 4 z o C ( E z j  - nz~)/ 'n  2 

+ 8Xoyo(Ea:) -- n:ri) ( E y j  -- 'n.yi )/ 'n 2 

+ 8zozo(Zz~ - . .z , ) (Z:r j  - , , : , ) / , ?  

J l -  . . . .  

(2) 

- E:r~ E:q~ I., 
- E y ~ E y i / ~  

-Ez~Ewl.  
(4b) 

2(Ez,:r, - Ez,E.~:,/~)xo + 2(Ey, z, - Ey, Ez, / . . )yo 

: + + 

-E;r~Ez, l,, 

9 -Ez.Ezi / . .  
(4c) 

The terms which do not contain Xo, y(, or zo are not 
explicitly written because they disappear on subsequent 
derivation. 

Summing expressions (2) over all i values 

[, , ]  + 1  ~ ? j ; -  (~::,j,)-/,, :,Ji~ 

+ 

+ + 

+ Ez~E:~:,/., 

+ EzyE~ji/7~ 

+ Ez~2z~/'n 

+ 8 ( E x i Y i  -- E:r iEy i / . , ) : roYo  

+ 8 ( E y i z i  - E y i E z i / n ) y o z o  

+ 8(EZiXi  -- Ez iE:r i /~ ' t ) zoxo  

+ .... (3) 

To find the minimum, the partial derivatives of (3) on Xo, 
Y0 and z0 are set equal to zero. The resulting equations 
(4) are linear in terms of x0, Y0 and z0 

2[Ex 2 - ( E x i ) 2 / n ] x o  + 2 ( E x i y i -  E x i E y i / n ) y o  

-Ey~Exi/n 
-r~z~r~zi/n 

(4a) 

The simultaneous solution of (4) gives the centroid 
coordinates (xo, Yo, Zo). This calculation has been incor- 
porated in the computer program I V T O N  (Balid 2;unid 
& Vickovid, 1994). 

The calculated values are orthogonal coordinates and 
a conversion to the crystal system follows as the last step. 
For a non-degenerated polyhedron with four vertices, 
the centroid is always equidistant to all of them. For 
irregular polyhedra with more vertices, the variance of 
the distances is in general larger than zero; it is an inverse 
measure of the 'sphericity' of the coordination polyhe- 
dron, describing its deviation from the circumscribed 
sphere. For coordination number (CN) 3, the solution 
is not unique. For such a case the solution is found 
in the program I V T O N  by calculating the equations for 
three planes, two perpendicular to, and bisecting, the 
two edges of the coordination triangle and the third 
containing all its vertices. 

3. Crystal-chemical parameters related 
to the centroid of coordination 

The crystal chemical parameters described below have 
been calculated using the program IVTON,  after the 
coordinates of the centroid have been determined. The 
crystal structure data for the examined structures were 
obtained from and are referenced in the Inorganic Crys- 
tal Structure Database (Bergerhoff, Hundt, Sievers & 
Brown, 1983). 

3.1. Average distance r f rom the centroid to the ligands 

This value can be used in evaluating the 'crystal 
radius' of the volume occupied by a coordination poly- 
hedron. In Table 1 the results of an analysis on a 
family of geometrically related structures are presented. 
The sulfides of the type ABS2 with both cations in 
distorted octahedral coordinations were compared. The 
average centroid-ligand distance (or the radius of the 
circumscribed sphere) is compared with the sum of the 
effective ionic radii of the cation and S 2- (Shannon, 
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Table 1. The sums of  effective ionic radii (,4) of  cations and S 2- (Shannon, 1976), the average distances to the six 
closest S atoms, and the average centroid radii for sulfides of  the ABS 2 type with distorted octahedral coordinations 

Cation Li + Na + K + Rb + Cu + Ag + TI + As 3+ Sb 3+ Bi 3+ 

Sum of ionic radii 2.60 2.86 3.22 3.36 2.61 2.99 3.34 2.42 2.60 2.87 
Average distance 2.71 2.92 3.18 3.35 2.93 2.90 3.23 2.95 3.01 2.98 
Centroid radius 2.71 2.92 3. i 8 3.37 2.81 2.86 3.28 3.25 3.16 3.02 

Table 2. Selected centroid parameters for the atoms in sulfides of  ABS2-type with distorted octahedral coordinations 

Centroid radius refers to the circumscribed sphere (the average centroid-ligand distance), sphericity is calculated from the standard deviation of centroid-ligand 
distances, the displacement is relative to the position of the centroid. The number of coordination polyhedra used for calculations is given at the element symbol. With 
several coordination polyhedra for an element, the values represent the minimum, the maximum and the average. 

Atom Li( l ) Na(2) K( 1 ) Rb(2) Cu(2) Ag(3) Tl(4) As(4) Sb(l 2) Bi(2) 

Centroid radius (r) 2.714 2.905-2.928 3.183 3.266-3.445 2.787-2.831 2.784-2.987 3.251-3.304 3.023-3.598 2.916-3.492 2.970-3.069 
2.917 3.369 2.809 2.864 3.275 3.245 3.156 3.019 

Sphericity ( I - o , / r )  0.977 0.9994).971 0.994 1.000-0.980 0.753--0.745 0.921--0.832 0.9844).969 0.992--0.894 0.9934).880 1.000--0.955 
0.985 0.99 ! 0.749 0.880 0.977 0.942 0.958 0.978 

Displacement(z5) 0.115 0.026-4).053 0.003 0.000-0.155 1.242-1.289 0.146-4).651 0.246--4).403 1.201-1.845 0.679-1.650 0.000--0.806 
0.041 0.097 1.265 0.369 0.292 1.483 1.085 0.403 

1976) and to the average distance of the central atom to 
the six S atoms. For the alkali cations there is practically 
no difference between the average bond distance and 
the centroid radius, although the significant differences 
between the centroid radius and the sums of the ionic 
radii should be noted. For cations with the s 2 lone 
pair (TI +, As 3÷, Sb 3÷ and Bi3+), the centroid radii are 
consistently larger than the average distances to ligands. 
Moreover, there is no substantial difference between As, 
Sb and Bi in the latter distances, showing the inferiority 
of the average bond length to the centroid concept for a 
quantitative description of a lone-pair cation. Note that 
for small cations with a high degree of covalent bonding 
(Cu ÷ and Ag+), the centroid radius, in contrast, is smaller 
than their average distance to the ligands. In Fig. 1 the 
correlations of centroid radii for the two different cations 
in the structure are represented for the investigated ABS2 
sulfides. 

3.6 

3.5 

~-~ 3.4 
~5 

3.3 
g, 

- 3.2 

~ 3.1 

3.0 

• AgAsS2 

• LiSbS2 

• CuBiS2 
• C u S b S ~  NaAsS2 

• AgSbS2 

• NaSbS2 

eRbSbS2 

• TIAsS2 

• TISbS2 

eNH4SbS2 
• KSbS2 

• RbBiS2 

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 

r for other cations (A) 

Fig. 1. Correlat ion between the radii of  the c i rcumscr ibed spheres for 
the A and B cations in ABS2 compounds.  For sulfides with B = Sb, 
the two branches with large and small  A cations, respect ively,  can be 
discerned,  intersecting at NaSbS2. 

3.2. Standard deviation O" r o f  distances from the centroid 
to the ligands 

We suggest its modification (1 - err~r) as a measure of 
'sphericity' for the coordination polyhedron. Its depen- 
dence on the type of central atom and ligands may be of 
considerable interest. In Table 2 the values for atoms in 
ABS2 compounds are presented. Significant differences 
are recorded for different cations. The best sphericities 
are obtained for alkali cations. For cations with highly 
active lone-electron pairs (As 3÷ and Sb 3+) sphericities 
can be significantly lower, while for Ag + and especially 
Cu ÷ the deviation from sphericity becomes remarkable. 

3.3. Centroid--central atom distance 

This distance describes the displacement A of the 
central atom from the 'best '  centre of the ligand arrange- 
ment. A can be used as a measure of stereochemical 
activity (Andersson & /~,strrm, 1972) for the s 2 lone 
p~ir of the central atom. The direction of displacement 
is assumed to be opposite to the orientation of the lone 
pair on this atom. In Fig. 2 this displacement is related to 
the radius of the sphere, i.e. the average centroid-ligand 
distance. For atoms with a highly active lone pair, a 
very striking correlation can be observed offering a new 
insight into this stereochemical activity. 

3.4. A triaxial ellipsoid 

A triaxial ellipsoid with the centre in the centroid and 
the surface fitted to the ligand positions describes the 
anisotropy of the ligand arrangement, especially for high 
coordination numbers. Calculation of this surface can be 
attempted for CN _> 6. 

If the set of points lies on the surface of an ellipsoid, 
their orthogonal coordinates (related to the ellipsoid 
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centre) satisfy the quadric 

where el l ,  e22, e33, el2, el3 and e23 are matrix com- 
ponents. With six or more points lying close to the 
surface of  an ellipsoid, it is in principle possible to 
obtain the best values for the components of the ellipsoid 
matrix by the linear least-squares method. If the least- 
squares calculation produces matrix components of a 
positive definite ellipsoid, it is possible to obtain the 
orientations and the lengths of the principal axes of  

3.6 

3.5 

3.4 

3.3 

~ 3.~' 

~ 3.1 

" ~  3.0 
if) 

2.9 

• <> 

0 

- o 

<> 
o 

© 

t O 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

• Ag 
As 

: Bi 
Cu  

• K 
! ':; tJ  

• Na  
• - R b  
,> Sb 
v TI 

1.6 1.8 2.0 

Central atom displacement 

Fig. 2. Correlation of the centroid sphere radius and the central atom 
displacement for selected ABS2 compounds with octahedrally coordi- 
nated (except for Cu) cations. 
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Fig. 3. Correlation of the volumes of the sphere and ellipsoid fitted 
to the same coordination polyhedron for cations in selected ABS2 
compounds. The point with the large deviation from the 1:1 line 
belongs to K in KSbS2. 

this ellipsoid from the eigenvectors and the positive 
eigenvalues of the matrix. Also, the volume of the 
ellipsoid can be calculated as V = 4~rlr2r3/3,  where rl ,  
r2 and r3 are the values of the principal half-axes. In 
Fig. 3 the ellipsoid volumes are related to the volumes 
of circumscribed spheres for the ABS2 structures. It 
can be seen that a very large number  of calculated 
coordinations produced satisfactory fits. The graph gives 
a useful check of  the reliability of  fitting an ellipsoid to 
the coordination polyhedron. The volumes of ellipsoids 
and corresponding spheres lie very close in almost all 
the calculated cases and the fit can be accepted as 
reliable and the ellipsoid axes used in determining the 
'sense of deformation ' .  Only in the case of  K in the 
KSbS2 structure does the difference between volumes 
appear to be unreasonably large and this fit should 
be considered unsuccessful, together with others that 
produced ellipsoids with negative eigenvalues. 
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